Skip to Content
Uncategorized

Progress on a Powerful New Way to Generate Electricity

A powerful new way to generate electricity could eventually make electric cars and electronic gadgets run longer.
August 28, 2014

About four years ago, researchers in Michael Strano’s chemical engineering lab at MIT coated a short piece of yarn made of carbon nanotubes with TNT and lit one end with a laser. It sparkled and burned like a fuse, demonstrating a new way to generate electricity that produces phenomenal amounts of power.

At the time, no one understood how it worked, and it was so inefficient that it was little more than a “laboratory curiosity,” Strano says.

Now, Strano has figured out the underlying physics, which has helped his team improve efficiencies dramatically—by 10,000 times—and charted a path for continued rapid improvements. One day, generators that use the phenomenon could make portable electronics last longer, and make electric cars as convenient as conventional ones, both extending their range and allowing fast refueling in minutes.

The efficiencies of the lab devices made so far are still low compared to conventional generators. Strano’s latest device is a little over 0.1 percent efficiency, whereas conventional generators are 25 to 60 percent efficient.

But Strano says they could be useful in some niche applications, where a sudden burst of power is needed. And Strano says that the further improvements in efficiency mean broader applications could soon be feasible.

The new generators exploit a phenomenon that Strano calls a thermopower wave. The conventional way to generate electricity by burning a fuel is to use heat to cause expanding gases to drive a turbine or a piston. In Strano’s system, as the fuel burns along the length of his nanotubes, the wave of combustion drives electrons ahead of it, creating an electrical current. It’s a much more direct and efficient way to generate electricity, since no turbines or conventional generators are required.

Since the nanogenerator runs on liquid fuels—which store far more energy than batteries—there’s hope that they could allow electric cars to go much farther than they do now.

It’s a setup not unlike the one in an internal combustion engine, in which bursts of fuel are sprayed into combustion chambers to drive pistons. Power electronic circuits could take the bursts of power from several nanotube generators and smooth it out, using it to drive electric motors in a car, for example. The fuel tank could be refilled like one in a conventional car. And because the carbon nanotubes aren’t consumed in the process, they can be used over and over again.

Recently, Strano discovered that switching from nanotubes to flat sheets of nanomaterials—such as single-atom-thick graphene—improves efficiency. Shaping the sheets to direct the energy of the thermopower wave also boosts performance.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.