Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

  • leon edler
  • A Stethoscope for Cars

    Phone app analyzes vehicle sounds to diagnose issues before you break down.

    Imagine hopping into a ride-share car, glancing at your smartphone, and telling the driver that the car’s left front tire needs air, its air filter should be replaced next week, and its engine needs two new spark plugs.

    Within the next year or two, people may be able to get that kind of diagnostic information in just a few minutes, in their own cars or any car they happen to be in. They wouldn’t need to know anything about the car’s history or to connect to it in any way; the information would be derived from analyzing the car’s sounds and vibrations, as measured by a phone’s microphone and accelerometers.

    The technology began as the doctoral thesis of MIT scientist Joshua Siegel, PhD ’16, who worked with mechanical engineering professor Sanjay Sarma. A smartphone app combining the various diagnostic systems the team developed could save the average driver $125 a year and slightly improve overall gas mileage, Siegel says.

    This story is part of the January/February 2018 Issue of the MIT News Magazine
    See the rest of the issue
    Subscribe

    With today’s smartphones, Siegel explains, “the sensitivity is so high, you can do a good job [of detecting the relevant signals] without needing any special connection.”

    The basic idea is to provide diagnostic information that can warn the driver of upcoming issues or needed routine maintenance, before these conditions lead to breakdowns or blowouts. For example, an engine’s sounds alone can indicate how clogged the air filter is and when to change it. “We’re listening to the car’s breathing, and listening for when it starts to snore,” Siegel says. “As it starts to get clogged, it makes a whistling noise as air is drawn in. Listening to it, you can’t differentiate it from the other engine noise, but your phone can.”

    Many of the diagnostics are derived by using machine learning to compare many recordings of sound and vibration from well-tuned cars with similar ones from cars that have a specific problem. The systems can then extract even very subtle differences. For example, algorithms designed to detect wheel balance problems did so more successfully than expert drivers from a major car company, Siegel says.

    A prototype smartphone app that incorporates all these diagnostic tools is being developed and should be ready for field testing in about six months, Siegel says. He has founded a startup company called Data Driven to commercialize it.

    Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

    Subscribe today
    Next in MIT News
    Want more award-winning journalism? Subscribe to Insider Online Only.
    • Insider Online Only {! insider.prices.online !}*

      {! insider.display.menuOptionsLabel !}

      Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      What's Included

      Unlimited 24/7 access to MIT Technology Review’s website

      The Download: our daily newsletter of what's important in technology and innovation

    /3
    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.